A Pair of Pharyngeal Gustatory Receptor Neurons Regulates Caffeine-Dependent Ingestion in Drosophila Larvae
نویسندگان
چکیده
The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food.
منابع مشابه
Caffeine Taste Signaling in Drosophila Larvae
The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has ...
متن کاملInvolvement of a Gr2a-Expressing Drosophila Pharyngeal Gustatory Receptor Neuron in Regulation of Aversion to High-Salt Foods
Regulation of feeding is essential for animal survival. The pharyngeal sense organs can act as a second checkpoint of food quality, due to their position between external taste organs such as the labellum which initially assess food quality, and the digestive tract. Growing evidence provides support that the pharyngeal sensory neurons regulate feeding, but much is still unknown. We found that a...
متن کاملMultiple gustatory receptors required for the caffeine response in Drosophila.
The ability of insects to detect and avoid ingesting naturally occurring repellents and insecticides is essential for their survival. Nevertheless, the gustatory receptors enabling them to sense toxic botanical compounds are largely unknown. The only insect gustatory receptor shown to be required for avoiding noxious compounds is the Drosophila caffeine receptor, Gr66a. However, this receptor i...
متن کاملIonotropic Receptor 76b Is Required for Gustatory Aversion to Excessive Na+ in Drosophila
Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by Na+-rich food requires Ionotropic Receptor 76b (Ir76b) in Drosophila labellar gu...
متن کاملArchitecture of the primary taste center of Drosophila melanogaster larvae.
A simple nervous system combined with stereotypic behavioral responses to tastants, together with powerful genetic and molecular tools, have turned Drosophila larvae into a very promising model for studying gustatory coding. Using the Gal4/UAS system and confocal microscopy for visualizing gustatory afferents, we provide a description of the primary taste center in the larval central nervous sy...
متن کامل